Toolbox for real time control task design using
Matlab/Simulink.

Roberto M. Linares Zamora', Dr. Pedro Mejia Alvarez', Dr. Alberto Soria Lopez?

'CINVESTAV-IPN Seccion de Computacion Av. IPN No. 2508, México D.F
’CINVESTAV-IPN Departamento de Control Automatico, Av. IPN No. 2508, México D.F
rlinares(@computacion.cs.cinveslav.mx pmejia(@cs.cinvestav.mx soria@eclrl.cinvestav.mx .

Abstract. Traditional control systems design often disregards the temporal
constraints arising from the implementation of real-time control applications.
Nowadays, real-time control process design does not include the timing effects
into its design process. For this purpose, we have developed a tool for the design
of control task in Simulink which are implemented into a real-time operating
system. The aim of our approach is to generate real-time control applications
without coding a single line of code, instead using the visual programming
capabilities of Simulink. The basic idea is to generate a C-API Simulink block
capablc of handling the C code produced by the MATLAB tool as a standalone
application within a Real Time kernel as control tasks. The resulting code can be
cxecuted on off-the-shelf standard personal computers, without requiring
complex or expensive hardware architectures (which is often associated with
specialized real time systems) and without causing any performance loss.
Performance and functionality tests were carried out by using a real time
microkernel developed on MS-DOS.

Keywords: C-API, toolbox, Kernel, ERT, TLC

1. Introduction.

Most computer control systems are embedded systems where the computer is a
component within a larger engineering system. The controllers are often implemented as
one or several tasks on a microprocessor using a real time operating system. In most
cases the microprocessor also contains other concurrent tasks performing different
functions, e.g., communication and user interfaces that require processor time [1]. The
Operating System (OS) typically uses multiprogramming, context switch, scheduling
policies, etc. to multiplex the execution of the different tasks on a single CPU.

Nowadays, the design of this type of applications begins to experiment new
approaches, some of them focusing new tools and others like the proposed approach, uses
a combination of different tools, to include real-time constraints into control system
design. The primary motivation of this paper lies in the generation of C code using the

© A. Gelbukh, C. Ydriez Mdrquez, O. Camacho Nieto (Eds.)
Advances in Artificial Intelligence and Computer Science
Research on Computing Science 14, 2005, pp. 369-380



370 Linares Zamora R., Mejia Alvarez P., Soria Lopez A.

developed API (Application programming interface) to execute it in a real time
microkernel as control process.

It is common practice in many control applications the use of design tools like
MATLAB/Simulink. Simulink is a useful tool for the development of control systems
that simulates complex control systems. However, these tools only focus on the control
problem, without considering how the concurrency and scheduling affects control
performance. In the design of any control application it is necessary to consider the
effects produced by the concurrency and the scheduling policy used along with the
following real-time constraints: the period and the computing time of the control

algorithm [2].

The design of real-time control systems must use efficient and flexible software
alternatives to complement the overall design, where aspects such as the sampling
period, the priority as well as the scheduling policies are considered when these
processes are implemented as control tasks in a real time kernel.

MATLAB/Simulink/Embedded Real TimeWorkshop (ERT) suite [4, 5, 6], an
automatic C language code generator for Simulink. When using Simulink, it is possible
to create, simulate and analyze complex dynamic systems by simply connecting
functional blocks, mostly available from various preconfigured libraries, within a friendly
graphical user interface (GUI). F urthermore, being Simulink a package of the MATLAB
problem solving environment, it shares the same straightforward integration of
computation, monitoring and visualization, thus allowing an easy display of any result of
a running simulation. By using Simulink the user can concentrate on modelling and
control issues, as opposed to programming issues. The ERT tool, controls the translation
of the blocks in a series of C functions than can be compiled and linked to obtain

executable code that can be used as a standalone application.

In this work, we propose the use of a real time microkernel to test the generated code
by Simulink. The main function of the real time microkemel, is to allow the concurrent
execution of several processes, besides allowing the creation, elimination,
synchronization and communication between processes. The generation of processes
(control tasks) is carried out by ERT tool of MATLAB/Simulink.

2. Related Work.

Some recent works [1] have pointed out the need to integrate control systems with
real time systems, creating an interest for the development of new applications this has
helped in the design of control systems with time restrictions using different scheduling
policies. One of the first works where the control and the real time are discussed is a



Toolbox for real time control task design using Matlab/Simulink 371

prototype toql for the co-design of control system and real time developed under Matlab
(2). The basic idea 1s to simulate a real time kernel in parallel with continuous plant
dynamics. This Matlab toolbox allows the user to explore the time behaviour of the
control algorithm, and to study the interaction between the control tasks and the
scheduler.  This tool is useful for the simulation of control system in real time;
pevertheless, the tool cannot simulate concurrent processes because Matlab does not
allow it, causing a poor support for the handling interruptions. In [3], a hard real time
Linux environment for control applications using MATLAB/Simulink is discussed. In
this application 1s used the RTW tool to shape the characteristics of the RTAI This work
is not complete yet, however, a high reliability application for simple control systems
design is proposed.

3. Matlab ERT

The Real-Time Workshop Embedded (ERT) tool is a separate, add-on product
for use with Real-Time Workshop. It is intended for use in embedded systems
development. The ERT provides a framework for the development of production code
that is optimized for speed, memory usage, and simplicity. The most important
characteristic of ERT is that can work as a host or a target. A target is an environment—
hardware and operating system—on which the generated code will run. The process of
specifying this environment is called targeting. The process of generating target-specific
code is controlled by a system target file, a template makefile, and a make command. To
select the target for our work, we specify these items individually. The host is the system
you use to run MATLAB, Simulink, and Embedded Real-Time Workshop. Using the
build tools on the host, we create code that runs on our target system microkernel.

The ERT generates optimized ANSI-C or ISO-C code for fixed-point and floating-
point microprocessors. It extends the capabilities provided by the Real-Time workshop to
support specification, integration, deployment, and testing of production applications on
embedded targets. During the generating code from a Simulink model, the ERT creates
several files that contain the complete description of the model. These files contain data
structures implemented by the ERT tool allowing the data handling of the Simulink

model parameters.

4. Framework Structure.

The general structure of the application is depicted in the Fig. 1. From a Simulink
diagram the C-API toolbox will generate C code. The process focuses mainly in the
generation of source C code from a Simulink control diagram using the C-API toolbox,
using a modified TLC (Target Language Compiler) file that simplifies the code.



372 Linares Zamora R., Mejia Alvarez P., Soria Lép... 1.

Once the C-API toolbox is added to the Simulink model, the script associated with
the block automatically sets all parameters of the active configuration set that are
relevant to code generation, including selection of the appropriate target.

HOST (Matlab/Simulink) TARGET (Kemel)

e TIITIESI T VTR g

Controd Tase

Applicaties

Comput it cvie Lbraries
£ (Proceas) fexa W ar

...... cememaaaad

” Pnncipy! progam
Kewnd Semaphoms
Mrisiiva Mailboas

eheduing

- =] fom
LY
Dincives
[Time and
jntamusbons
\ Real Time Kemel
)

Fig. 1. Application Structure.

5. RTW Structure,

The process of generating source code from Simulink models is depicted in Fig. 2. A
high-level M-file command controls the Real-Time Workshop build process. The default
command, used with most targets, is make_rtw. When the build process is initiated, the
Real-Time Workshop invokes make_rtw. This command invokes the Target Language
Compiler TLC as wel as other utilities such as make command The build process consists
of the following steps invoked by the make_rtw command :

1.- Compilation of the block diagram and generation of a model description file,
model.itw.

2.- Generation by the Target Language Compiler of target-specific code model.rtw
as specified by the selected system target file.

3.- Creation of a makefile, mode/.mk, from the selected template makefile.

4.- Compilation and linking by the make command. ,as instructed in the generated
make file creating an .exe file. In our application we modified the TLC to create a
standalone application.



Toolbox for real time control task design using-Matlab/Simulink 373

6. Target Language Compiler.

ERT generates source code for models and blocks through the Target Language
Compiler, which reads script files (or 7LC files) that specify the format and content of
the generated source files. The Target Language Compiler (TLC) is designed for one
purpose — to convert the model description file, mode!l.rtw, (or similar files) into target-
specific code or text. As an integral component of Real-Time Workshop, the Target
Language Compiler transforms an intermediate form of a Simulink block diagram, called
model.rtw, into C code. The model.rtw file contains a “compiled” representation of the

model describing the execution semantics of the block diagram in a very high level
language.

Simulink
msodel .md)
Real-Time Workshop
TLC program: l Real-Time Workshop Builﬂ
* System target file model.rtw
® Block target filos
¢ Inlinod S-function Target
target files ~—— Language
¢ Target Langunge Compller
Compiler function
library ‘ model.c
¢ Dynamically generated
block target files.
Run-time interface g 20001 .k
support files . Aigke
[
I |
meodelexe Standalone
Program

Fig. 2. Real-Time Workshop Code Generation Process.

After reading the model.rtw file, the Target Language Compiler generates t_he
code based on target files, which specify particular code for each block, and '”"d‘_'l'w'de
Jfiles, which specify the overall code style. The TLC works like a text processor, using Ly
target files and the model.rtw file to generate ANSI C code. In order to create a ““E"“
specific application, ERT also requires a template makefile that specifies the appropriate
C compiler and compiler options for the build process. The template makefile 1S
transformed into a makefile (imodel.mk) by performing token expansion specific to ;
given model. The Target Language Compiler uses block target files to transform eac



374  Linares Zamora R., Mejia Alvarez P., Soria Ldpez A.

block in the model.rtw file and a model-wide target file for global customization of the
code.

Fig. 3, shows how the Target Language Compiler Process works with the
asociated target files and the Real-Time Workshop output to produce the code. When
generating code from a Simulink model using Real-Time Workshop, the first step in the
automated process is to generate a model rtw file. The model.rtw file includes all of the
model-specific information required for generating code from the Simulink model.
model.rtw is passed to the Target Language Compiler, which uses it in combination with
a set of included system target files and block target files to generate the code.

Simulink mode! (model.mdl)

—
—
—
—

Tergel Files

o————0

[od

o o

o o[o0————— Fites of genersted
O——————0 | code

Fig. 3. The Target Language Compiler Process

7. ERT Data Structures.

The ERT generates the following functions to describe the Simulink model

behawviour:
model_intialize() — Performs all model initialization and should be called once at the

execution of the Simulink model.
model_step() — Contains the output and update code for all blocks in the Simulink

model.
model_output() — Contains the output code for all blocks in the Simulink model.

model_update() —This contains the update code for all blocks in the Simulink model.



Toolbox for real time control task design using Matlab/Simulink 375

model_terminate() — This contains all model shutdown code and should be called as
part of system shutdown.

When a model is constructed in Simulink, the ERT encapsulates all the information
about the model in a data structure, called "tModel". This structure contains only
information required for the model build process. rtModel structure may also contain
model-specific information related to timing, solvers, and model data such as inputs,
outputs, states, and parameters.

The symbol definitions for tModel structure in the generated code are given by:

* Structure definition (in modelh):
struct _RT_MODEL_model Tag ({

}i
* Forward declaration typedef (in model_types.h):

typedef struct _RT_MODEL_model_Tag RT_MODEL_model;

* Variable and pointer declarations (in model.c ¥
RT_MODEL_model model M ;
RT_MODEL_model *model_M = &model M ;

* Variable export declaration (in model.h):
extern RT_MODEL_model *model M;

In order to interface the user code to rtModel, the ERT provides accessor macros.
User code can use the macros, and access the fields they reference in the model h file. If
the code interfacing involved only a single model, the user it will be refer to its rtModel

generically as model M, that is used to access its rtModel as in the following code
fragment.

#include "model.h"
const char *errStatus = rtmGetErrorStatus(model M) ;

To interface the code to the rtModel structures when more than one model is used,
the user must include model.h headers for each model, as in the following code fragment:

#include "modelA.h" /* Make model A entry points visible */
#include "modelB.h" /* Make model B entry points visible */

void myHandWrittenFunction(void)

const char T terrStatus;

modelA_initialize(l); /* Call model A initializer */
modelB_initialize(l); /* Call model B initializer */
/* Refer to model A's rtModel v/

errStatus = rtmGetErrorStatus(modelA M) ;

/* Refer to model B's rtModel @/ -

errStatus = rtmGetErrorStatus(modelB M);




376 Linares Zamora R., Mejia Alvarez P., Soria Ldpez A.

8. C-API Code Generator.

The C-API toolbox consists of a block library from Simulink designed for the
generation of C code, as shown in Fig.2. The block is a fixed-step MATLAB Script
function written in C. The C-API block executes and configures all parameters of the
model’s active configuration set without manual intervention of the user and optimizes
the code generation from the Simulink models quickly and easily. This block can execute
a configuration script independently from the code generation process and the changes
are then visible in the GUI and can be saved with the model.

8.1. Block Function

In many MATLAB Real-Time Workshop applications, the user may want to interact
with a model’s signals or parameters in the generated code. For example, you may want
to monitor and modify parameters. Or, in a signal monitoring or data logging
application, you may want to interface with signals. The developed C-API block can
generate code to interface with signals and parameters within other applications and
without the MATLAB intervention working as stand-alone program. This is a target-
based Real-Time Workshop feature that provides access to global block outputs and

global parameters in the generated code.

8.2. The C-API Function.

The C-API script implements a single function without a return value. The function

takes the single argument cs:
function gen_tar(cs) ;

The argument cs is a handle to a proprietary object that contains information about
the model’s active configuration set. Simulink obtains this handle and passes it in to the
configuration function when the user double-clicks a C-API block. The code use cs as a
“black box” object that transmits information to and from the active configuration set,

using the accessor functions described below.

To set options or obtain option values, we use the Simulink set_param and
get_param functions. The option names are passed in to set_param and get_param as
strings specifying an internal option name. The internal option name is not always the
same as the corresponding option label on the GUI (for example, the Configuration
Parameters dialog).The following code excerpt tums off the Support absolute time
option:

set_param(cs, 'SupportAbsoluteTime', 'off');



Toolbox for real time control task design using Matlab/Simulink 377

8.3 Selecting a Target.

The C-API defines a target configuration. The script uses the ERT target as default
for generate the C code. The script first stores string variables that correspond to the
System target file, Template makefile, and Make command settings:

stf = 'ert.tlc’';
tmf = 'ert_gen.tmf';
mc = 'make_rtw';

The system target file is selected by passing the cs object and the stf string to the
switch Target function:

switchTarget (cs,stf, []);

9. Model Example.

This section describes a simple example using de C-API toolbox to generate C code
and use it like a standalone applications in a real time microkernel. This example

simulates a control system, named model.mdl (Fig. 4). The system response is showed in
the Fig. 5.The next step is use the C-API to generate the C code.

9.1. Adding C-API toolbox to the model.

1 Select C-API block from the library. Drag and drop the block into the Simulink
model (model.mdl).

2 In the model, double-click your C-API block.

3 In the MATLAB window, you should see the test message of the C-API script:
Custom Configuration Wizard Script completed. This indicates that the C-API block
successfully executed the script.

4 Open the Configuration Parameters dialog and view the Real-Time Workshop
options. You should now see that the model is configured for the ERT target.

x £ et o a =101
Ele E&t Yew | ;-xuat-on Fglmd 1«:5 ueg:

DDHQ'!‘I"E Q“ib -|mo ]Nm }g

i =
2e2s i
Tiansgtet Fon Scope

40

awny |
Transter Fead

Ready qoow T U T T T edess T T T T

Fig. 4. Simulink model “model.mdl”.




378 Linares Zamora R., Mejia Alvarez P., Soria Lopez A.

oot SURERELIS DD L Al ..,f."v":?:.‘. : .-J.QL"J
am PHP AEIE'BRF

r RS A S ,‘\

e kb e o e ndb

O TS LLERLI

Fig. 5. System response.

Table 1. Real Time Workshop embedded coder file packing file description.

File Description
model.c Contains entry points for all code implementing the model algorithm (for example,
model_step, model_initialize, model_terminate, model_SetEventsForThisBaseStep).
model_privateh  Contains local macros and local data that are required by the model and subsystems.
model h Declares model data structures and a public interface to the model entry points and data
structures.

model_data.c

ntains the declarations for the parameters

model_data.c is conditionally generated. It co
cture, and any zero representations used for

data structure, the constant block 1/0 data stru

the model’s data structure types.

Provides forward declarations for the real-time model data structure and the parameters

mode!_types.h
data structure. Also provides type definitions for user-defined types used by the model.
rtwtypes.h Defines data types, structures and macros required by Real-Time Workshop Embedded
Coder penerated code. Most other generated code modules require these definitions.

9.2 Generated Code Modules

The ERTW creates a build directory in the working directory to store the generated
source code. The build directory also contains object files, a makefile, and other files
created during the code generation process. The table 1 summarizes the structure of
source code generated by the ERT. The generated C code is executed as an independent
application inside the real time microkemnel. In this example, 4 concurrent processes are

executed with a Round Robin (RR) scheduling policy: ’

Process 1 => Basic clock
Process 2 => Basic Text Processor

Process 3 => Ball



Toolbox for real time control task design using Matlab/Simulink 379

Process 4 => Irregular polygon
Process 5 => p_simulink (additional process)

An additional process was created, called "p_Simulink" that invokes the generated
code. In the microkernel, 4 processes are executed: the clock, the process p_Simulink, the
ball and the irregular polygon. The p_Simulink process plots the response of the system.
The Fig. 6, shows the response of simulated control system executed within the

microkernel. It can be noted that the response is very close to the one obtained in
Simulink.

Kernel processes p_simulink

l

st tians b i S

Fig 6. Microkernel processes.

The generated code is one more process inside the microkemel, opening t‘h‘;
possibility of creating more processes from Simulink models and test several contro
Processes to obtain a more detailed study of the behaviour of complex control systems.

10. Conclusion.

Real-yime control design is difficult and is very sensitive to errors. The desing o;:
control code usually disregards timing constraints making difficult the integration ‘_’S
control and real-time applications in an integrated framework. In this paper, waag:d;
to design real-time control applications without programming a single line of code.
Instead to generated C code. The C generated is then used as 2 task into a real-time
kemnel.



380 Linares Zamora R., Mejia Alvarez P., Soria Lépez A.

An example of code generation was developed to simulate the execution of a control
system and its execution use the Round Robin scheduling process. Due to the
characteristics of our design tool it is possible to obtain code for different platforms
(UNIX, DOS and WINDOWS) and to handle it like an independent application. Future
works will be dedicated to use the generated C-API to handle several concurrent
processes within microkemnel to develop an application that allows systematically to
design of real time control systems, using the developed interface.

References

1. Johan Eker: "A Matllab Toolbox for Real-Time and Control Systems Co-Desing".
Procedings of °ht International Conference on Real-Time Computing Systems and
Applications, Hong Kong, , December 1999.

2. Anton Cervin, Dan Henriksson, Bo Lincoln.: "Jitterbug and True Time: Analysis Tools
for Real-Time Control Systems ". Proceeding of the nd Workshop on Real-Time Tools,
Copenhagen, Denmark, August, 2002.

3. Quaranta, P. Mantegazza. : Using Matlab/Simulink RTW to build Real Time Control
Applications in user space with RTTA-LXRT . Dipartimento di Ingegneria Acrospaziale et
Control, Politecnico di Milano, Italy, 2003.

4. Matlab Users Guide. The Matworks Inc., Third printing Revised for Version 6.1
(Release 14SP1), October 2004.

5. Simulink User's Guide. The Matworks Inc., Third printing Revised for Version 6.1
(Release 14SP1), October 2004.

6. Real-Time Workshop Users Guide. The Matworks Inc., Third printing Revised for
Version 6.1 (Release 14SP1), October 2004,



